Dado que la difracción de rayos X ha hecho posible determinar los detalles de los estados desoxi y oxi de la hemoglobina, es posible ya formular una descripción bastante completa del cambio global y especular con respecto a su mecanismo.
La transición desde la conformación desoxi a la conformación oxi comporta alteraciones importantes de las características de la interacción subunidad-subunidad. Puede obtenerse algún conocimiento de este proceso mediante un análisis más detenido de la Figura 7.12b. Obsérvese la región situada en el extremo inferior
izquierdo, donde la subunidad /32 interacciona con la cadena En la forma desoxi, el C-terminal de f¡2 (residuo 146) se encuentra sobre la hélice C de Oí] (residuos 36-42) y se mantiene en esta posición mediante una red de enlaces de hidrógeno y puentes salinos. La His 97 de la esquina FG de la j32 es empujada contra la esquina CD de la a l entre Thr 41 y Pro 44. En la forma oxi, la rotación y deslizamiento de las subunidades han empujado los C-terminales de las cadenas fl apartándolos de los contactos a (Figura 7.12b). Los puentes salinos y los enlaces de hidrógeno que sostienen el C-terminal se han roto, y la His 97 de la j32 se encuentra ahora entre Thr 3 8 y Thr 41 de . Dada la simetría de la estructura, se producen una serie de cambios exactamente equivalentes en la interfase 0^3,. Es como si la molécula hubiera “saltado” a un nuevo conjunto de interacciones.
En el proceso se han roto varias interacciones fuertes (en concreto las que afectan a los C-terminales). En términos del modelo MWC, esta conformación más laxa se denomina relajada (R). El precio energético de este cambio se paga mediante la unión del 0 2 a la molécula. Una vez que ha salido el 0 2, la molécula vuelve de manera natural a su conformación desoxi de menor energía Esta conformación más ajustada es, en la nomenclatura MWC, el estado tenso (T).
¿De qué forma se comunica exactamente la energía de la unión del 0 2 para producir este cambio molecular? De nuevo, los detalles son complicados, aunque puede obtenerse una ligera idea del mismo examinando la Figura 7.13, que muestra la relación de la His F8 y de la Val adyacente (FG5) con el hemo de la desoxihemoglobina. La figura incluye un hecho importante que no se ha mencionado
antes: no sólo se encuentra el átomo de hierro de la conformación desoxi un poco por encima del plano del hemo, sino que el propio hemo no es del todo plano, sino que está distorsionado y adopta una forma de cúpula. Además, tanto en la desoximioglobina como en la desoxihemoglobina, el eje de His F8 no es exactamente perpendicular al hemo sino que presenta una inclinación de unos 8o.
Cuando el oxígeno se une al otro lado, tira del átomo de hierro una corta distancia hacia abajo dentro del hemo y aplana éste (Figura 7.13b y c). Este cambio no puede producirse sin un reordenamiento molecular, puesto que un movimiento de este tipo acercaría demasiado al hemo el hidrógeno £ de His F8 y la cadena lateral de Val FG5. Lo que sucede es que la histidina cambia su orientación hacia la perpendicular, desplazando con ello la hélice F y la esquina FG. A su vez, este movimiento distorsiona y debilita todo el complejo de enlaces de H y puentes salinos que conectan las esquinas FG de una subunidad con las hélices C de otra. Por consiguiente, se produce el reordenamiento que se muestra en la Figura 7.12. Expresado en términos más simples, lo que ha ocurrido es que la unión del 0 2, al tirar del hierro una fracción de nanómetro dentro del hemo, ha producido mediante un efecto de palanca un desplazamiento mucho mayor de la estructura circundante, y en particular en las interfases cruciales a-p.
En 1970, M. F. Perutz, uno de los pioneros de los estudios de difracción de rayos X de las proteínas, propuso este mecanismo para explicar la cooperatividad de la unión del oxígeno. Pero, ¿corresponde con la realidad? Recientemente se han realizado experimentos ingeniosos que señalan que al menos es un planteamiento razonable. Barrick et al (véase la Bibliografía) han utilizado la técnica de mutagénesis de lugar dirigida para sustituir los residuos de histidina proximales de las cadenas a y ¡i por glicinas. A continuación, se estudió la proteína en presencia de imidazol 10 mM, de forma que la pequeña molécula de imidazol puede reemplazar al residuo de histidina pero no está ligado a la hélice F (véase la Rgura 7.14). Como consecuencia, aunque la unión del oxígeno puede todavía aplastar al hemo, no desplaza a la hélice F. Lo que se observa es que, en gran medida, se pierde la cooperatividad de la unión, como predice el modelo de Perutz.
Los cambios descritos en el modelo de Perutz son un reordenamiento de la estructura terciaria de cada subunidad tras la unión del oxígeno. También sabemos que se produce un reordenamiento importante de la estructura cuaternaria entre los estados desoxi lleno y oxi lleno (T y R) del tetràmero completo. ¿Cómo se conectan los cambios estructurales terciarios y cuaternarios? Gran parte de la respuesta la ha proporcionado la investigación realizada en el laboratorio de Gary Ackers y se resume en la Figura 7.15. Los cambios de la estructura terciaria que acompañan a la unión del oxígeno pueden tolerarse hasta un punto determinado antes de que se produzca el cambio T — - R. Concretamente, siempre que está ocupado un lugar en cada uno de los dos dímeros a0, la molécula en su conjunto adopta la estructura cuaternaria R. Así pues, la hemoglobina no sigue completamente el modelo KNF ni el modelo MWC, sino una ruta novedosa que contiene características de ambos modelos. Este modelo más reciente no implica que los modelos anteriores sean en general incorrectos. Como veremos más adelante, existen proteínas alostéricas que parecen seguir de manera casi exacta el modelo MWC.
Efectos de otros ligandos sobre el comportamiento alostérico de la hemoglobina
La unión cooperativa y el transporte de oxígeno son tan sólo una parte del comportamiento alostérico de la hemoglobina. Las realidades de la fisiología animal imponen otras exigencias. En primer lugar, cuando el oxígeno se utiliza en los tejidos, se produce dióxido de carbono, que debe transportarse de vuelta a los pulmones o las branquias. La acumulación de C02 reduce también el pH en los eritrocitos mediante la reacción del bicarbonato,
COz + H¿0 Í= * HCO3- + H +
Esta reacción de los eritrocitos la cataliza la enzima anhidrasa carbónica. Al mismo tiempo, la demanda de oxígeno elevada, especialmente en el músculo que está realizando una actividad enérgica, puede dar lugar a un déficit de oxígeno. Como se indicará en el Capítulo 13, una consecuencia de este déficit es la producción de ácido láctico, el cual reduce también el pH. La disminución del pH en los tejidos y en la sangre venosa señala la exigencia de un mayor aporte de oxígeno.
La hemoglobina funciona de manera eficaz para satisfacer estas necesidades, utilizando para ello su transición alostérica entre estados de afinidad alta y de afinidad baja estructuralmente diferentes. El dióxido de carbono, los protones y otras sustancias que fomentan estos cambios se denominan efectores alostéricos
No hay comentarios:
Publicar un comentario
Apreciamos tu Pregunta!