lunes, 10 de marzo de 2014

Estructura primaria de los ácidos nucleicos

NATURALEZA Y TRA SC END ENC IA DE LA ESTRUCTURA PRIMARIA

 Dos características importantes de todos los polinucleótidos:

1. Una cadena polinucleotídica posee un sentido o cUreccionalidad. El enlace fosfodiéster entre las unidades monoméricas se produce entre el carbono 3' de un monómero y el carbono 5' del siguiente. Así pues, los dos extremos de una cadena polinucleotídica lineal son diferenciables. Un extremo lleva normalmente un fosfato 5' sin reaccionar, y el otro extremo un grupo hidroxilo 3' sin reaccionar.

2. Una cadena polinucleotídica posee individualidad, determinada por la secuencia de sus bases, es decir, la secuencia de nudeótidos. Esta secuencia se denomina estructura primaria de ese ácido nucleico concreto. Si queremos describir una secuencia polinucleotídica determinada (tanto si se trata de DNA como si es RNA), resulta extremadamente difícil y totalmente innecesario dibujar la molécula en su totalidad, como en la Figura 4.1. Ello ha hecho que se diseñaran algunas nomenclaturas más compactas. Si indicamos que estamos describiendo una molécula de DNA o una molécula de RNA, se comprende ya la mayor parte de la estructura. Podemos abreviar una molécula pequeña de DNA de la forma siguiente:



Esta notación indica: (1) la secuencia de nucleótidos, mediante sus abreviaturas de una letra (A, C, G, T); (2) que todos los enlaces fosfodiéster son entre hidroxilos 3’ y fosfatos 5'; y (3) que esta molécula concreta tiene un grupo fosfato en su extremo 5* y un hidroxilo 3' sin reaccionar en su extremo 3'. También nos dice que es una secuencia de DNA y no RNA, porque tiene T y no U. Si se supone que todos los enlaces fosfodiéster unen un hidroxilo 3' a un fosfeto 5' (como suele ocurrir), puede utilizarse una notación más compacta de la misma molécula:

pApCpGpTpT

Se sobrentiende la presencia del grupo 3' —OH sin reaccionar. Si hubiera un fosfato en el extremo 3' y un hidroxilo sin reaccionar en el extremo 5\ escribiríamos ApCpGpTpTp- Por último, si nos interesa solamente la secuencia de bases de la molécula, como sucede en muchas ocasiones, podemos utilizar una notación aún más compacta ACGTT. Obsérvese que, por convenio, la secuencia de una cadena polinucleotídica suele escribirse con el extremo 5' a la izquierda y el extremo 3' a la derecha. La importancia principal de la estructura primaria o secuencia, es que la información genética se almacena en la estructura primaria del DNA. Un gen no es más que una secuencia concreta de DNA, que codifica la información mediante un lenguaje de cuatro letras, en el que cada “letra” es una de las bases.

EL DNA COM O SUSTANCIA G EN ÉT ICA : INDICIOS INICIALES

La búsqueda de la sustancia de la que están formados los genes tiene una historia larga. A finales de la primera década del siglo xix, poco después de que el bioquímico alemán Friedrich Miescher hubiera aislado por primera vez el DNA del esperma de salmón, algunos científicos sospecharon que el DNA podía ser el material genético. Pero los estudios posteriores que indicaron que el DNA contenía tan sólo cuatro clases de monómeros parecieron descartar que pudiera desempeñar este complicado papel. Los primeros investigadores pensaron que era más probable que los genes estuvieran formados por proteínas, ya que estaba empezando a observarse que éstas eran moléculas mucho más complejas. Durante la mayor parte de la primera mitad del siglo xx, los ácidos nucleicos se consideraron simplemente como una clase de sustancia estructural del núcleo celular.

Entre 1944 y 1952, una serie de experimentos cruciales apuntaron claramente al DNA como material genético. En 1944 Oswald Avery, Colin MacLeod y Maclyn McCarty descubrieron que el DNA de cepas patógenas de la bacteria Pneumococcus podía transferirse a cepas no patógenas, haciéndolas patógenas (Figura 4.8a). La transformación era genéticamente estable y las generaciones sucesivas de bacterias conservaban las nuevas características. Sin embargo, fue un elegante experimento realizado por Alfred Hershey y Martha Chase el que convenció finalmente a muchos científicos. Hershey y Chase estudiaron la infección de la bacteria Escherichia coli por un virus bacteriano, el bacteriófago T2.


H C U R A 4 .8 Experimentos que demostraron que ei DMA es la sustancia genética. (a) Avery a l demostraron que los neumococos no patógenos podían hacerse patógenos mediante la transferencia de DNA procedente de una cepa patógena. (b) Hershey y Chase demostraron que era la transferencia de DNA vírico de un virus a una bacteria lo que daba origen a nuevos virus.

Aprovechando el hecho de que las proteínas del bacteriófago contienen azufre y poco fósforo y que el DNA del bacteriófago contiene fósforo pero no azufre, estos investigadores marcaron el bacteriófago T2 con los isótopos radiactivos 35S y 32P (Figura 4.8b). A continuación, comprobaron que cuando el bacteriófago se unía a E coli, era principalmente el 32P (y, por tanto, el DNA del bacteriófago) el que se transfería a la bacteria. Aunque la parte proteica residual del bacteriófago se eliminaba de la bacteria, sólo el DNA insertado era suficiente para dirigir la formación de nuevos bacteriófagos.

Mediante estos experimentos y otros similares, en 1952 se había aceptado ya en general que el DNA debía ser la sustancia genética. Pero, ¿cómo podía transportar la enorme cantidad de información que una célula necesitaba, cómo podía transmitir esa información a la célula y, sobre todo, cómo podía reproducirse de manera exacta en la división celular? Las respuestas a estas preguntas vinieron sólo tras uno de los descubrimientos más notables de la historia de la ciencia. En 1953, James Watson y Francis Crick propusieron una estructura para el DNA que abrió todo un mundo nuevo de la biología molecular.

No hay comentarios:

Publicar un comentario

Apreciamos tu Pregunta!